深圳市晶友嘉电子有限公司

SHENZHEN JINGYOUJIA ELECTRONIC CO., LTD

CRYSTAL RESONATOR SPECIFICATIONS

石英晶体谐振器承认书

客户 Customer:	立创商城			
型号 Product:	SB21 声表面			
料号 Code No:	SB2143392TT			
频率 Frequency:	433.920MHz			
数量 Sample Quantity:				
日期 Date:	2021-7-29			

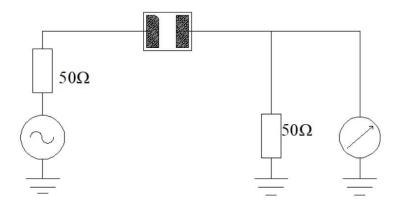
深圳市晶友嘉电子有限公司

SHENZHEN JINGYOUJIA ELECTRONIC CO., LTD 深圳市龙华区东环二路数字智能颖博园 B 栋 412

TEL: 86-755-32840201 32850080

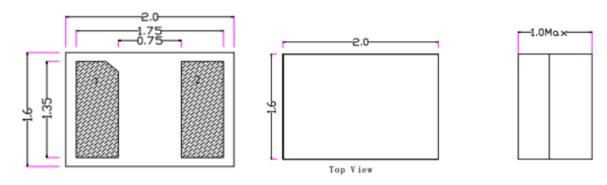
FAX: 86-755-84269460

供应商确认栏:

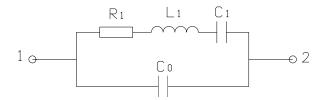

制作 Handler	确认 Checked	核审 Approved
戴晓嘉	陈斌	李晨

客户承认栏:

承认 Checked	核审 Approved


1. Package Dimension

Unit: mm



Pin	Connection
1	Input
2	Output

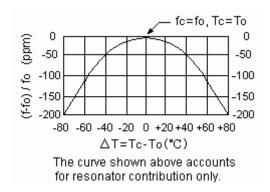
2.Dimension

3. Equivalent LC Model

4. Performance

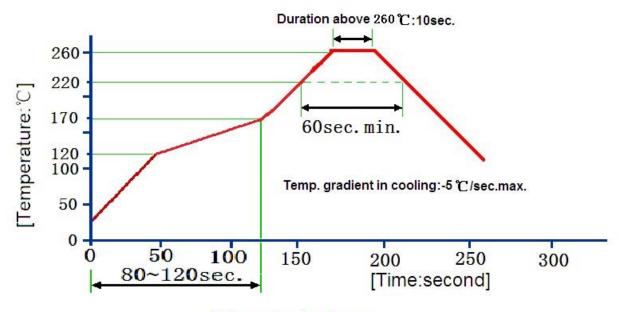
4.1 Maximum Rating

ltem:	Value		
DC Voltage V _{DC}	12V		
Operation Temperature Range	-40℃ to +85℃		
Storage Temperature Range	-40℃ to +85℃		
RF Power Dissipation	0dBm		


4.2 Electronic Characteristics

ltem	Unit	Minimum	Typical	Maximum
Center Frequency (f _c)	MHz	433.845	433.920	433.995
Insertion Loss	dB	_	2.2	2.6
Quality Factor				
Unloaded Q	_	_	7340	_
50Ω Loaded Q	_	_	1650	_
Temperature Stability				
Turnover Temperature (T ₀)	$^{\circ}$	25	-	55
Turnover Frequency (f ₀)	MHz		f _c	
Frequency Temperature Coefficient (FTC)	ppm/°C²	_	0.032	_
Frequency Aging	ppm/yr	_	<±10	
DC Insulation Resistance	ΜΩ	1.0	_	_
RF Equivalent RLC Model				
Motional Resistance R ₁	Ω	_	29	35
Motional Inductance L ₁	μH	_	78.1096	_
Motional Capacitance C ₁	fF	_	1.7241	_
Shunt Static Capacitance C ₀	pF	1.90	2.15	2.40

Notes:


- a. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- b. The center frequency, f_c , is measured at the minimum insertion loss point with the resonator in the 50Ω test system.
- c. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- d. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- e. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static capacitance between Pin 1 and Pin 2 measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

4.3 Temperature Characteristics

5. Remarks

- 5.1 SAW devices should not be used in any type of fluid such as water, oil, organic solvent, etc.
- 5.2 Be certain not to apply voltage exceeding the rated voltage of components.
- 5.3 Do not operate outside the recommended operating temperature range of components.
- 5.4 Sudden change of temperature shall be avoided, deterioration of the characteristics can occur.
- 5.5 Be careful of soldering temperature and duration of components when soldering.
- 5.6 Do not place soldering iron on the body of components.
- 5.7 Be careful not to subject the terminals or leads of components to excessive force.
- 5.8 SAW devices are electrostatic sensitive. Please avoid static voltage during operation and storage.
- 5.9 Ultrasonic cleaning shall be avoided. Ultrasonic vibration may cause destruction of components.

Reflow cycles:3 cycles max.